Every finite group has a normal bi-Cayley graph

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite groups admitting a connected cubic integral bi-Cayley graph

A graph   is called integral if all eigenvalues of its adjacency matrix  are integers.  Given a subset $S$ of a finite group $G$, the bi-Cayley graph $BCay(G,S)$ is a graph with vertex set $Gtimes{1,2}$ and edge set ${{(x,1),(sx,2)}mid sin S, xin G}$.  In this paper, we classify all finite groups admitting a connected cubic integral bi-Cayley graph.

متن کامل

Every rayless graph has an unfriendly partition

We prove that every rayless graph has an unfriendly partition.

متن کامل

A short proof that every finite graph has a tree-decomposition displaying its tangles

We give a short proof that every finite graph (or matroid) has a tree-decomposition that displays all maximal tangles. This theorem for graphs is a central result of the graph minors project of Robertson and Seymour and the extension to matroids is due to Geelen, Gerards and Whittle.

متن کامل

Eigenvalues of the Cayley Graph of Some Groups with respect to a Normal Subset

‎‎Set X = { M11‎, ‎M12‎, ‎M22‎, ‎M23‎, ‎M24‎, ‎Zn‎, ‎T4n‎, ‎SD8n‎, ‎Sz(q)‎, ‎G2(q)‎, ‎V8n}‎, where M11‎, M12‎, M22‎, ‎M23‎, ‎M24 are Mathieu groups and Zn‎, T4n‎, SD8n‎, ‎Sz(q)‎, G2(q) and V8n denote the cyclic‎, ‎dicyclic‎, ‎semi-dihedral‎, ‎Suzuki‎, ‎Ree and a group of order 8n presented by                                      V8n = < a‎, ‎b | a^{2n} = b^{4} = e‎, ‎ aba = b^{-1}‎, ‎ab^{...

متن کامل

A Classification of Finite Groups with Integral Bi-cayley Graphs

The bi-Cayley graph of a finite group G with respect to a subset S ⊆ G, which is denoted by BCay(G,S), is the graph with vertex set G× {1, 2} and edge set {{(x, 1), (sx, 2)} | x ∈ G, s ∈ S}. A finite group G is called a bi-Cayley integral group if for any subset S of G, BCay(G,S) is a graph with integer eigenvalues. In this paper we prove that a finite group G is a bi-Cayley integral group if a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Ars Mathematica Contemporanea

سال: 2017

ISSN: 1855-3974,1855-3966

DOI: 10.26493/1855-3974.1298.937